LOW EMI, SPREAD MODULATING, CLOCK GENERATOR

ICS91730

Features/Benefits

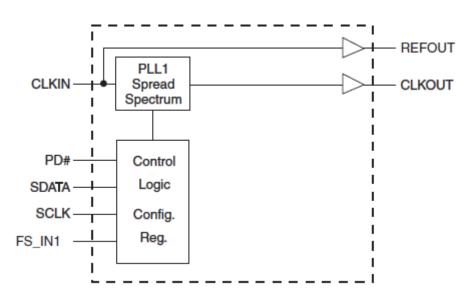
- ICS91730 is a Spread Spectrum Clock targeted for Mobile PC and LCD panel applications that generates an EMI-optimized clock signal (EMI peak reduction of 7-14 dB on 3rd-19th harmonics) through use of Spread Spectrum techniques.
- ICS91730 focuses on the lower input frequency range of 14.318 to 80.00 MHz with a spread modulation of 20kHz to 40kHz.

Specifications

- Supply Voltages: VDD = 3.3V ±0.3V
- Frequency range: 14.318 MHz ≤Fin ≥ 80 MHz
- Cyc to Cyc jitter: <150ps
- Output duty cycle 45-55%
- 0°C to +85°C operation
- 8-pin SOIC
- Reference input

Block Diagram

Pin Configuration


CLKIN	1	8	PD#*
VDD	2	7	SCLK
GND	3	6	SDATA
CLKOUT	4	5	REF_OUT/FS_IN1*

8 Pin SOIC

* Internal Pull-Up Resistor

Functionality

FSIN_1	MHz	Spread % default
0	14.318 MHz in> 27MHz out	-0.8 down spread
1	27.00MHz in> 27.00MHz out	-1.25 down spread

1

Pin Descriptions

PIN #	PIN NAME	PIN TYPE	DESCRIPTION
1	CLKIN	PWR	Input for reference clock.
2	VDD	IN	Power supply, nominal 3.3V
3	GND	OUT	Ground pin.
4	CLKOUT	I/O	Modulated clock output.
5	REF_OUT/FS_IN1*	I/O	Un-modulated 3.3V reference clock output. Frequency select latch input. Refer to the functionality table.
6	SDATA	PWR	Data pin for SMBus circuitry, 5V tolerant.
7	SCLK	PWR	Clock pin of SMBus circuitry, 5V tolerant.
8	PD#*	PWR	Asynchronous active low input pin, with 120Kohm internal pull-up resistor, used to power down the device. The internal clocks are disabled and the VCO and the crystal are stopped.

* Internal Pull-Up Resistor ** Internal Pull-Down Resistor

Table 1: Frequency Configuration (see I2C Byte0)

	FS4	FS3	FS2	FS1	FS0	Sprd Type	Sprd %
	0	0	0	0	0		0.60
	0	0	0	0	1	DOWN	0.80
	0	0	0	1	0	SPREAD	1.00
14in/27out	0	0	0	1	1	(-)	1.25
1411/27 Out	0	0	1	0	0	(-)	1.50
	0	0	1	0	1		2.00
	0	0	1	1	0	CENTER	0.50
	0	0	1	1	1	SPD (+/-)	1.00
	0	1	0	0	0	DOWN	0.60
	0	1	0	0	1	SPREAD	1.00
	0	1	0	1	0	(-)	-0.80
	0	1	0	1	1	CTR SPD	+/-0.3
	0	1	1	0	0		
						DOWN	1.50
	0	1	1	0	1	SPREAD	1.75
14in/14out	0	1	1	1	0	(-)	2.00
27in/27out	0	1	1	1	1	(-)	2.50
	1	0	0	0	0		3.00
	1	0	0	0	1		1.25
	1	0	0	1	0		0.40
	1	0	0	1	1		0.50
	1	0	1	0	0	CENTER	0.70
	1	0	1	0	1	SPD (+/-)	1.00
	1	0	1	1	0		1.20
	1	0	1	1	1		1.50
	1	1	0	0	0		0.60
	1	1	0	0	1	DOWN	0.80
	1	1	0	1	0	SPREAD	1.00
48in/48out	1	1	0	1	1	-	1.25
66in/66out	1	1	1	0	0	(-)	1.50
	1	1	1	0	1		2.00
	1	1	1	1	0	CENTER	0.50
	1	1	1	1	1	SPD (+/-)	1.00

Above is the hard coded 5 bit (32 entry) ROM table.

FS3:0 are ONLY accessible through I2C software programming bits (byte0 bits5:7). FS4 can also be decoded from FS_IN1 latched input hardware pins.

FS_IN1 \rightarrow FS4. Upon power-up the default is to use hardware selection of FS_IN1 latched value.

FS3 = 0, FS2 = 0, FS1 = 0, FS0 = 1 upon power-up (refer to the functionality table on page 1).

To access non-default spread entries in the ROM, byte0 programming should be used. In order to change the power up default of $FS_IN1 = 1$ (-1.25% down spread) to any other spread % entry, first change byte0bit 0 to software selection by switching this bit to a '1' and then program the desired percentage by changing byte0 bits 7:3.

General SMBus Serial Interface Information

How to Write

- Controller (host) sends a start bit
- · Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) sends the byte count = X
- IDT clock will acknowledge
- Controller (host) starts sending Byte N through Byte N+X-1
- IDT clock will acknowledge each byte one at a time

Index Block Write Operation

• Controller (host) sends a Stop bit

How to Read

- Controller (host) will send a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- · Controller (host) will send a separate start bit
- · Controller (host) sends the read address
- IDT clock will acknowledge
- IDT clock will send the data byte count = X
- IDT clock sends Byte N+X-1
- IDT clock sends Byte 0 through Byte X (if X_(H) was written to Byte 8)
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

		()		
Receiver)		Index Block F	Read O	peration
	Co	ntroller (Host)		IDT (Slave/Receiver)
	Т	starT bit		
	S	lave Address		
ζ	WR	WRite		
•				ACK
ζ	Beg	inning Byte = N		
				ACK
κ	RT	Repeat starT		
	S	lave Address		
<	RD	ReaD		
				ACK
				Data Byte Count=X
		ACK		
				Beginning Byte N
(ACK		
			ē	0
		0	X Byte	0
		0	×	0
		0		
SS				Byte N + X - 1
	N	Not acknowledge		
	Р	stoP bit		

	Index Di	UCK W	
Control	ler (Host)		IDT (Slave/Receiver)
Т	starT bit		
Slave	Address		
WR	WRite		
			ACK
Beginnin	g Byte = N		
			ACK
Data Byte	e Count = X		
			ACK
Beginni	ng Byte N		
			ACK
0		×	
0		X Byte	0
0		Ö	0
			0
Byte N	l + X - 1		
			ACK
Р	stoP bit		

Read Address	Write Address
D5 _(H)	D4 _(H)

4

Byte		Affected		Bit C	ontrol		
0	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	-	FS0	Spread/FS0	RW	Srpead Pecentage See Table 1 These are I2C bits		1
Bit 6	-	FS1	Spread/FS1	RW			0
Bit 5		FS2	Spread/FS2	RW			0
Bit 4		FS3	Spread/FS3	RW			0
Bit 3		FS4	FS4	RW	U OI	only	
Bit 2		PD# Tri_Sate	PD# Tri_Sate	RW	Hi-Z	LOW	1
Bit 1		Spread Enable	Spread Enable	RW	OFF	ON	1
			Spread Spectrum Control				
			FS 3:4 Hard/Software				
Bit 0		HW/SW Control	Select	RW	HW	SW	0

Byte		Affected Pin			Bit Co	ontrol	
1	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7		REF_OUT	REF_OUT_Enable	RW	Disable	Enable	1
Bit 6	-	REF_OUT	Slew Rate REF-OUT	RW	Nominal	Fast	1
Bit 5		FS-IN_1	FS-IN_1 Readback	R	-	-	Х
Bit 4		(Reserved)	(Reserved)	R	-	-	0
Bit 3		CLK_OUT	Slew Rate CLK-OUT	RW	Nominal	Fast	1
Bit 2		CLK_OUT	CLK_OUT_Enable	RW	Disable	Enable	1
Bit 1		(Reserved)	(Reserved)	R	-	-	1
Bit 0		(Reserved)	(Reserved)	R	-	-	1

Byte		Affected Pin			Bit Co	ontrol	
2	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	Х	-	(Reserved)	-	-	-	1
Bit 6	Х	(Reserved)	(Reserved)	RW	Disable	Enable	1
Bit 5	Х	(Reserved)	(Reserved)	RW	Disable	Enable	1
Bit 4	Х	(Reserved)	(Reserved)	RW	Disable	Enable	1
Bit 3	Х	(Reserved)	(Reserved)	RW	Disable	Enable	1
Bit 2	Х	(Reserved)	(Reserved)	RW	Disable	Enable	1
Bit 1	Х	(Reserved)	(Reserved)	RW	Disable	Enable	1
Bit 0	Х	(Reserved)	(Reserved)	RW	Disable	Enable	1

Byte	Affected Pin				Bit Co	ontrol	
3	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	Х	(Reserved)	(Reserved)	RW	-	-	1
Bit 6	Х	(Reserved)	(Reserved)	RW	-	-	1
Bit 5	Х	(Reserved)	(Reserved)	RW	-	-	1
Bit 4	Х	(Reserved)	(Reserved)	RW	-	-	1
Bit 3	х	(Reserved)	(Reserved)	RW	-	-	1
Bit 2	Х	(Reserved)	(Reserved)	RW	-	-	1
Bit 1	Х	(Reserved)	(Reserved)	RW	-	-	1
Bit 0	Х	(Reserved)	(Reserved)	RW	-	-	1

Byte	Affected Pin				Bit C	ontrol	
4	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	Х	(Reserved)	(Reserved)	RW	-	-	1
Bit 6	Х	(Reserved)	(Reserved)	RW	-	-	1
Bit 5	Х	(Reserved)	(Reserved)	RW	-	-	1
Bit 4	Х	(Reserved)	(Reserved)	RW	-	-	1
Bit 3	Х	(Reserved)	(Reserved)	RW	-	-	1
Bit 2	Х	(Reserved)	(Reserved)	RW	-	-	1
Bit 1	Х	(Reserved)	(Reserved)	RW	-	-	1
Bit 0	Х	(Reserved)	(Reserved)	RW	-	-	1

Byte		Affected	Pin		Bit C	ontrol	
5	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	Х	(Reserved)	(Reserved)	-	-	-	1
Bit 6	Х	(Reserved)	(Reserved)	-	-	-	1
Bit 5	Х	(Reserved)	(Reserved)	-	-	-	1
Bit 4	Х	(Reserved)	(Reserved)	-	-	-	1
Bit 3	Х	(Reserved)	(Reserved)	RW	-	-	1
Bit 2	Х	(Reserved)	(Reserved)	RW	-	-	1
Bit 1	Х	(Reserved)	(Reserved)	RW	-	-	1
Bit 0	Х	(Reserved)	(Reserved)	RW	-	-	1

Byte		Affected	Pin		Bit Co	ontrol	
6	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	Х	Revision ID Bit 3	(Reserved)	R	-	-	1
Bit 6	Х	Revision ID Bit 2	(Reserved)	R	-	-	1
Bit 5	Х	Revision ID Bit 1	(Reserved)	R	-	-	1
Bit 4	Х	Revision ID Bit 0	(Reserved)	R	-	-	1
Bit 3	Х	Vendor ID Bit 3	(Reserved)	R	-	-	1
Bit 2	Х	Vendor ID Bit 2	(Reserved)	R	-	-	1
Bit 1	Х	Vendor ID Bit 1	(Reserved)	R	-	-	1
Bit 0	Х	Vendor ID Bit 0	(Reserved)	R	-	-	1

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the ICS91730. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

Supply Voltage 3.	7 V
Voltage on any pin with respect to GND0	.5 to +3.7 V
Storage Temperature5	55°C to +125°C
Power Dissipation 0.	5 W

Electrical Characteristics–Input/Supply/Common Output Parameters

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input High Voltage	V _{IH}		2		$V_{DD} + 0.3$	V
Input Low Voltage	V _{IL}		V _{SS} - 0.3		0.8	V
Input High Current	I _{IH}	$V_{IN} = V_{DD}$	-5		5	mA
Input Low Current	I _{IL1}	$V_{IN} = 0$ V; Inputs with no pull-up resistors	-5			mA
Powerdown Current	I _{DD3.3PD}			1	5	mA
Operating Current	1	$fin = 14.318MHz^2$	27		41	mA
Operating Current	DD3.30P	$fin = 66.67 MHz^2$	32		50	mA
Input Frequency	Fi	$V_{DD} = 3.3 V$		14.318		MHz
Pin Inductance	Lpin				7	nH
	CIN	Logic Inputs			5	pF
Input Capacitance ¹	C _{OUT}	Output pin capacitance			6	pF
	CINX	X1 & X2 pins	27	36	45	pF
Transition time ¹	T _{trans}	To 1st crossing of target frequency			3	ms
Settling time ¹	Ts	From 1st crossing to 1% target frequency			3	ms
Clk Stabilization ¹	T _{STAB}	From V_{DD} = 3.3 V to 1% target frequency			3	ms
Delay	t_{PZH}, t_{PZL}	Output enable delay (all outputs)	1		10	ns

 T_{A} = 0 - 85°C; Supply Voltage V_{DD} = 3.3 V +/-5%

¹Guaranteed by design, not 100% tested in production.

²Operating current depends on both the input and output frequencies. The values shown represent the upper and lower extremes. The higher the input/output frequency, the higher the current draw. The relationship is linear.

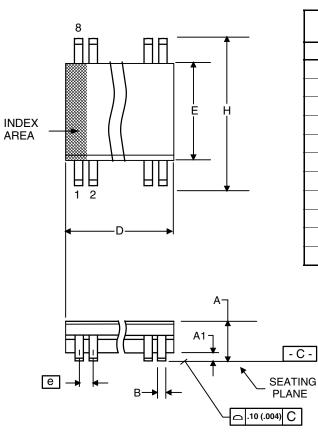
Electrical Characteristics-CLKOUT

$T_A = 0 - 05 \ 0, \ 0DD = 5$	$T_A = 0^{-1} 05^{-1}$						
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Output High Voltage	V _{OH3}	$I_{OH} = -1 \text{ mA}$	2.4			V	
Output Low Voltage	V _{OL3}	I _{OL} = 1 mA			0.4		
Rise Time	tr3	V _{OL} = 0.41V, V _{OH} = 0.86V	0.5	0.6	1	ns	
Fall Time	tf3	$V_{OH} = 0.86V V_{OL} = 0.41V$	0.5	0.6	1	ns	
Duty Cycle	d _{t3}	measurement from differential wavefrom - 0.35V to +035V	45	50	55	%	
Jitter, Cycle to cycle	t _{jcyc-cyc} 1	$V_{T} = 50\%$		50	150	ps	

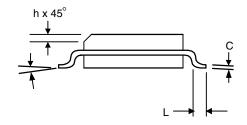
 $T_A = 0 - 85^{\circ}C$; $V_{DD} = 3.3V + -5\%$; $C_L = 15 \text{ pF}$ (unless otherwise specified)

¹Guaranteed by design, not 100% tested in production.

Electrical Characteristics-REF


 $T_A = 0 - 85^{\circ}C$; $V_{DD} = 3.3V + -5^{\circ}$; $C_L = 15 \text{ pF}$ (unless otherwise specified)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Frequency	F ₀₁			14.318		MHz
Output Impedance	R_{DSP1}^{1}	$V_{\rm O} = V_{\rm DD}^{*}(0.5)$	20	48	60	Ω
Output High Voltage	V _{OH} ¹	$I_{OH} = -1 \text{ mA}$	2.4			V
Output Low Voltage	V _{OL} ¹	I _{OL} = 1 mA			0.4	V
Output High Current	I _{OH} ¹	$V_{OH@MIN} = 1.0 V, V_{OH@MAX} = 3.135 V$	-29		-23	mA
Output Low Current	I _{OL} ¹	$V_{OL @MIN} = 1.95 V$, $V_{OL @MAX} = 0.4 V$	29		27	mA
Rise Time	t _{r1} 1	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$	1	1.2	2	ns
Fall Time	t_{f1}^{1}	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$	1	1.2	2	ns
Duty Cycle	d_{t1}^{1}	V _T = 1.5 V	45	51	55	%
Jitter	t _{jcyc-cyc} 1	$V_{T} = 1.5 V$		105	300	ps


¹Guaranteed by design, not 100% tested in production.

Package Outline and Package Dimensions (8-pin SOIC, 150 Mil. Body)

Package dimensions are kept current with JEDEC Publication No. 95

	Millimeters		Inc	hes
Symbol	Min	Max	Min	Max
A	1.35	1.75	.0532	.0688
A1	0.10	0.25	.0040	.0098
В	0.33	0.51	.013	.020
С	0.19	0.25	.0075	.0098
D	4.80	5.00	.1890	.1968
E	3.80	4.00	.1497	.1574
е	1.27 E	BASIC	0.050	BASIC
Н	5.80	6.20	.2284	.2440
h	0.25	0.50	.010	.020
L	0.40	1.27	.016	.050
α	0 °	8 °	0 °	8 °

Ordering Information

Part / Order Number	Shipping Packaging	Package	Temperature
91730AMLF	Tubes	8-pin SOIC	0 to +85°C
91730AMLFT	Tape and Reel	8-pin SOIC	0 to +85°C

"LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

"A" is the device revision designator (will not correlate with the datasheet revision).

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

9

Revision History

Rev.	Issue Date	Who	Description	Page #
В	06/25/04		Add Lead Free package description to Ordering Information	10
С	06/29/04		Add Revision History table to datasheet.	11
			1. Revise ABS max ratings.	
			2. Updated REF Electrical Characteristics table.	
D	05/23/05		3. Updated LF ordering information from "lead free" to "RoHS compliant".	8-10
Е	06/04/08		Updated MLF ordering info	9
			1. Added operating current specs that were inadvertantly ommitted	
			2. Updated ordering info to latest format	
F	06/16/11	RDW	3. Changed CL from "10-20 pF" to 15 pF	1, 7-9

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775

For Tech Support

www.idt.com/go/clockhelp pcclockhelp@idt.com

Corporate Headquarters

Integrated Device Technology, Inc. www.idt.com

© 2011 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, ICS, and the IDT logo are trademarks of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners. Printed in USA