

General Description

The MAX9713 evaluation kit (EV kit) is a fully assembled and tested printed-circuit board (PCB) that contains the MAX9713 filterless class D amplifier. The EV kit is capable of delivering 6W into an 8Ω load and is designed to operate from a 10V to 25V DC power supply. The MAX9713 EV kit accepts differential or single-ended input signals and provides an option to select between different switching frequencies.

Ordering Information

PART	TYPE
MAX9713EVKIT+	EV Kit

⁺Denotes lead-free and RoHS-compliant.

♦ 10V to 25V Single-Supply Operation

- ♦ Up to 85% Efficiency
- ♦ Drives 6W into 8 Ω or 8W into 16 Ω
- **♦ Differential or Single-Ended Input Modes**
- ♦ Pin-Selectable Frequency Options
- ♦ Pin-Selectable Gain Options
- ♦ Low 0.1% THD+N
- **♦ Surface-Mount Construction**
- **♦ Fully Assembled and Tested**

Component List

Features

DESIGNATION	QTY	DESCRIPTION
C1	1	0.1µF ±10%, 25V X5R ceramic capacitor (0402) TDK C1005X5R1E104K
C2, C3	2	33μF ±10%, 35V tantalum capacitors (D case) AVX TAJD336K035
C4, C5	2	0.1µF ±10%, 25V X7R ceramic capacitors (0603) Murata GRM188R71E104K TDK C1608X7R1E104K or equivalent
C6, C7, C8	3	100pF ±5%, 50V C0G ceramic capacitors (0402) Murata GRP1555C1H101J Taiyo Yuden UMK105CG101JW TDK C1005C0G101J
C9, C10, C12	3	0.47µF ±10%, 6.3V X5R ceramic capacitors (0402) Murata GRM155R60J474K TDK C1005X5R0J474K
C11	1	0.01µF ±10%, 25V X7R ceramic capacitor (0402) Murata GRP155R71E103K TDK C1005X7R1E103M

DESIGNATION	QTY	DESCRIPTION
C13	1	1μF ±10%, 25V X7R ceramic capacitor (0805) TDK C2012X7R1E105K or equivalent
C14	1	1000pF ±10%, 50V X7R ceramic capacitor (0603) Murata GRM188R71H102K TDK C1608X7R1H102KT
C15	0	Not installed, ceramic capacitor (0603)
C16-C22	0	Not installed, ceramic capacitors (0402)
D1	1	5.1V, 20mA zener diode (SOT-23) Central CMPZ5231B LEAD FREE (Top Mark: C8F)
FB1	1	100Ω ±25%, 1.7A ferrite bead (0603) Murata BKP1608HS101-T
FB2, FB3	2	1k Ω ±25%, 150mA ferrite beads (0402) Murata BK1005HM102-T
FOUT1+, FOUT1-, FOUT2+, FOUT2-	0	Not installed, test points
JU1–JU5	5	3-pin headers
JU6, JU7	2	2-pin headers

Component List (continued)

DESIGNATION	QTY	DESCRIPTION	
L4, L5	0	Not installed, power inductors	
R1	1	10kΩ ±5% resistor (0402)	
R2, R3	0	Not installed, resistors (0402)	
T1	0	Not installed, common-mode choke	
U1	1	32-pin TQFN-EP*, 5mm x 5mm x 0.8mm Maxim MAX9713ETJ+	
_	7	Shunts	
_	1	PCB: MAX9713 Evalution Kit+	

^{*}EP = Exposed paddle.

Component Suppliers

SUPPLIER	PHONE	WEBSITE
AVX Corp.	843-946-0238	www.avxcorp.com
Central Semiconductor Corp.	631-435-1110	www.centralsemi.com
Murata Mfg. Co., Ltd.	770-436-1300	www.murata.com
Taiyo Yuden	800-348-2496	www.t-yuden.com
TDK Corp.	847-803-6100	www.component.tdk.com

Note: Indicate that you are using the MAX9713 when contacting these component suppliers.

Quick Start

Recommended Equipment

Before beginning, the following equipment is needed:

- 15V, 1A power supply
- Audio source (i.e., CD player, cassette player)
- $8\Omega/16\Omega$ speaker

Procedure

The MAX9713 EV kit is fully assembled and tested. Follow the steps below to verify board operation. Caution: Do not turn on the power supply until all connections are completed.

- 1) Verify that no shunt is across jumper JU6 (differential input mode).
- 2) Verify shunt across pins 1-2 of jumper JU1. Install shunt across jumper JU7 (EV kit is enabled).

- 3) Verify shunts across pins 1-2 of jumpers JU2 and JU3 (Gain = 16dB).
- 4) Verify shunts across pins 1-2 of jumpers JU4 and JU5 (spread-spectrum mode, frequency centered at 335kHz).
- 5) Connect the speaker across the OUT+ and OUT-pads.
- 6) Connect the positive terminal of the 15V power supply to the V+ pad and the ground terminal of the power supply to the GND pad.
- Connect the audio source across the VIN+ and VINpads.
- 8) Turn on the power supply, and then turn on the audio source.

Detailed Description

The MAX9713 EV kit contains the MAX9713 filterless class D amplifier IC. The EV kit operates from a 10V to 25V DC power supply and accepts a differential or single-ended audio input source. The single-ended input mode accepts up to 2VP-P signals, and the differential mode accepts up to 4VP-P signals. The audio input source is amplified to drive 6W into an 8 Ω speaker.

The MAX9713 EV kit provides three sets of differential outputs. The device outputs (OUT+/-) can be connected directly to a speaker load without any filtering. However, a filter can be added to ease evaluation. The filtered outputs (FOUT1+/-) require installation of filtering components T1, C21, and C22. The LCR filtered outputs (FOUT2+/-) require installation of filtering components L4, L5, C15–C20, R2, and R3.

Jumper Selection

Shutdown Mode

Jumpers JU1 and JU7 control the shutdown pin (SHDN) of the MAX9713. See Table 1 for the JU1 and JU7 functions.

Note: Contact your local Maxim representative for recommended MAX9713 filtering component values.

Gain Selection

Jumpers JU2 and JU3 provide an option to select the output voltage gain. See Table 2 for JU2 and JU3 functions. See Table 5 for power vs. gain and input levels.

Switching Frequency

The MAX9713 has two operating modes, fixed-frequency modulation (FFM) mode and spread-spectrum modulation (SSM) mode. Jumpers JU4 and JU5 control pins FS1 and FS2. See Table 3 for JU4 and JU5 functions.

Table 1. JU1 and JU7 Functions (SHDN)

JU1 SHUNT POSITION	JU7 SHUNT POSITION	EV KIT FUNCTION
Pins 1 and 2	Installed (SHDN = high)	EV kit enabled (default)
Pins 2 and 3	Installed, without external signal (SHDN = low)	Shutdown mode
Pins 1 and 2	Not installed, with external signal connected to SHDN pad	SHDN pin driven by external signal. Shutdown is active low.

Table 2. JU2 and JU3 Functions (G1 and G2)

JU2 SHUNT LOCATION	JU3 SHUNT LOCATION	MAX9713 OUTPUT GAIN (dB)
Pins 1 and 2 (G1 = high)	1-2 (G2 = high)	16 (default)
Pins 1 and 2 (G1 = high)	2-3 (G2 = low)	13
Pins 2 and 3 (G1 = low)	1-2 (G2 = high)	19.1
Pins 2 and 3 (G1 = low)	2-3 (G2 = low)	22.1

Note: Make sure a shunt is installed across pins 1-2 of jumper JU1.

Table 3. JU4 and JU5 Functions (FS1 and FS2)

JU4 SHUNT LOCATION	JU5 SHUNT LOCATION	MAX9713 SWITCHING FREQUENCY (kHz)
Pins 1 and 2 (FS1 = high)	1-2 (FS2 = high)	335 ±10%, SSM (default)
Pins 1 and 2 (FS1 = high)	2-3 (FS2 = low)	236, FFM
Pins 2 and 3 (FS1 = low)	1-2 (FS2 = high)	460, FFM
Pins 2 and 3 (FS1 = low)	2-3 (FS2 = low)	335, FFM

Note: Make sure a shunt is installed across pins 1-2 of jumper JU1.

MIXIM

Input Mode

Jumper JU6 provides an option to select between a differential or single-ended input mode of the EV kit. See Table 4 for JU6 functions.

Table 4. JU6 Functions

SHUNT POSITION	EV KIT INPUT MODE
Not installed	Differential input mode (default)
Installed (VIN- pad AC-coupled to GND)	Single-ended input mode

Table 5. MAX9713 Power vs. Gain and Input Levels at 10% THD+N

GAIN (dB)	V _{IN} DIFF RMS (V)	R _L (Ω)	P _{OUT} AT 10% THD+N (W)
13.0	1.27	16	8
16.1	0.89	16	8
19.1	0.63	16	8
22.1	0.45	16	8
13.0	0.78	8	6
16.1	0.54	8	6
19.1	0.39	8	6
22.1	0.27	8	6

Figure 1. MAX9713 EV Kit Schematic

MIXIM

Figure 2. MAX9713 EV Kit Component Placement Guide—Component Side

Figure 3. MAX9713 EV Kit PCB—Component Side

Figure 4. MAX9713 EV Kit PCB—Layer 2 (GND)

Figure 5. MAX9713 EV Kit PCB—Layer 3 (VDD)

Figure 6. MAX9713 EV Kit PCB—Solder Side

Figure 7. MAX9713 EV Kit Component Placement Guide—Solder Side

Revision History

REVISION NUMBER	REVISION DATE	REVISION DESCRIPTION	PAGES CHANGED
0	_	Initial release	_
1	4/05	_	_
2	11/07	Update to lead-free and RoHS-compliant; various edits; replaced Figures 1–7.	1–7

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.