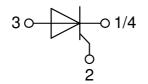
Thyristor

MCO50-16io1

V_{RRM}	=	1600 V
I _{tav}	=	57 A
Vτ	=	1,2 V


Single Thyristor

Part number

MCO50-16io1

Backside: isolated **E**72873

Features / Advantages:

- Thyristor for line frequency
- Planar passivated chip
- Long-term stability

Applications:

- Line rectifying 50/60 Hz
- Softstart AC motor control
- DC Motor control
- Power converter
- AC power control
- Lighting and temperature control

Package: SOT-227B (minibloc)

- Isolation Voltage: 3000 V~
- Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0
- Base plate: Copper
- internally DCB isolated
- Advanced power cycling

Terms Conditions of usage:

The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application- and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact the sales office, which is responsible for you. Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you. Should you intend to use the product in aviation, in health or live endangering or life support applications, please notify. For any such application we urgently recommend

to perform joint risk and quality assessments;
the conclusion of quality agreements;

- to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.

IXYS reserves the right to change limits, conditions and dimensions.

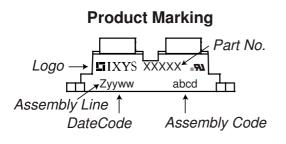
Data according to IEC 60747and per semiconductor unless otherwise specified

© 2015 IXYS all rights reserved

LIXYS

MCO50-16io1

Thyristo	r			1	Ratings	5	1
Symbol	Definition	Conditions		min.	typ.	max.	Uni
V _{RSM/DSM}	max. non-repetitive reverse/forwa	ard blocking voltage	$T_{VJ} = 25^{\circ}C$			1700	١
V _{RRM/DRM}	max. repetitive reverse/forward b	locking voltage	$T_{vJ} = 25^{\circ}C$			1600	١
R/D	reverse current, drain current	$V_{R/D} = 1600 V$	$T_{VJ} = 25^{\circ}C$			50	μA
		V _{R/D} = 1600 V	$T_{vJ} = 125^{\circ}C$			3	mA
V _T	forward voltage drop	I _τ = 50 A	$T_{vJ} = 25^{\circ}C$			1,27	\
		$I_{T} = 100 \text{ A}$				1,53	١
		$I_{T} = 50 \text{ A}$	$T_{vJ} = 125 ^{\circ}C$			1,20	\
		$I_{T} = 100 \text{ A}$				1,50	١
ITAV	average forward current	$T_c = 80^{\circ}C$	$T_{vJ} = 150^{\circ}C$			57	A
T(RMS)	RMS forward current	180° sine				90	A
ν _{το}	threshold voltage		T _{vJ} = 150°C			0,88	\
r _T	slope resistance } for power l	oss calculation only				6	mΩ
R _{thJC}	thermal resistance junction to cas	5e				0,72	K/W
R _{thCH}	thermal resistance case to heatsi				0,20	,	K/W
P _{tot}	total power dissipation		$T_c = 25^{\circ}C$, -	170	W
I _{TSM}	max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{v,l} = 45^{\circ}C$			740	1
-151	C C	t = 8,3 ms; (60 Hz), sine	$V_{\rm R} = 0 V$			800	A
		$\frac{t}{t} = 10 \text{ ms}; (50 \text{ Hz}), \text{ sine}$	$T_{\rm V,I} = 150^{\circ}{\rm C}$			630	
		t = 8,3 ms; (60 Hz), sine	$V_{\rm N} = 0 V$			680	, A
l²t	value for fusing	t = 0,0 ms; (50 Hz), sine t = 10 ms; (50 Hz), sine	$\frac{V_{\rm H}}{T_{\rm VJ}} = 45^{\circ}{\rm C}$			2,74	
		t = 8,3 ms; (60 Hz), sine	$V_{\rm R} = 0 V$			2,66	l.
		t = 0.5 ms; (50 Hz), sine t = 10 ms; (50 Hz), sine	$T_{V,I} = 150^{\circ}C$			1,99	kA ² s
		t = 8,3 ms; (60 Hz), sine	$V_{R} = 0 V$			1,93	1
<u></u>	junction capacitance		$V_{R} = 0 V$ $T_{VJ} = 25^{\circ}C$		32	1,95	
C,		$V_{\rm R} = 400 \text{V} \text{f} = 1 \text{MHz}$			32	10	pF W
P _{GM}	max. gate power dissipation	$t_{\rm P} = 30 \mu {\rm s}$	$T_c = 150 \circ C$			10	
_		t _P = 300 μs				1	W W
P _{GAV}	average gate power dissipation	T (5000 (50 H				0,5	W
(di/dt) _{cr}	critical rate of rise of current	$T_{VJ} = 150 ^{\circ}C; f = 50 \text{Hz}$ re				100	A/με
		$t_{P} = 200 \mu s; di_{G}/dt = 0.3 A/\mu s; -$					
			on-repet., $I_{\tau} = 50 \text{ A}$				A/μs
(dv/dt) _{cr}	critical rate of rise of voltage	$V = \frac{2}{3} V_{DRM}$	$T_{vJ} = 150^{\circ}C$			1000	V/με
		$R_{GK} = \infty$; method 1 (linear volta)					
V _{ат}	gate trigger voltage	$V_{D} = 6 V$	$T_{vJ} = 25^{\circ}C$			1,4	\
			$T_{vJ} = -40 ^{\circ}\text{C}$			1,6	١
I _{GT}	gate trigger current	$V_{D} = 6 V$	$T_{vJ} = 25^{\circ}C$			80	mA
			$T_{vJ} = -40 ^{\circ}C$			200	mA
V_{gd}	gate non-trigger voltage	$V_{D} = \frac{2}{3} V_{DRM}$	$T_{vJ} = 150^{\circ}C$			0,2	\
	gate non-trigger current					5	mA
I.	latching current	t _p = 10 μs	$T_{vJ} = 25 \degree C$			450	mA
		$I_{G} = 0.3 \text{ A}; \text{ di}_{G}/\text{dt} = 0.3 \text{ A}/\mu \text{s}$	5				
I _H	holding current	$V_{D} = 6 V R_{GK} = \infty$	$T_{vJ} = 25 ^{\circ}C$			100	mA
t _{gd}	gate controlled delay time	$V_{\rm D} = \frac{1}{2} V_{\rm DRM}$	$T_{VJ} = 25 ^{\circ}C$			2	με
<u>.</u>		$I_{\rm G} = 0.3 \text{A}; \text{di}_{\rm G}/\text{dt} = 0.3 \text{A}/\mu\text{s}$					
t _q	turn-off time	$V_{\rm B} = 100 \text{ V}; \ \text{I}_{\rm T} = 50 \text{ A}; \ \text{V} = \frac{2}{3}$			150		μ
- 4		$di/dt = 10 \text{ A}/\mu \text{s} dv/dt = 15 \text{ V}/\mu \text{s}$					۳

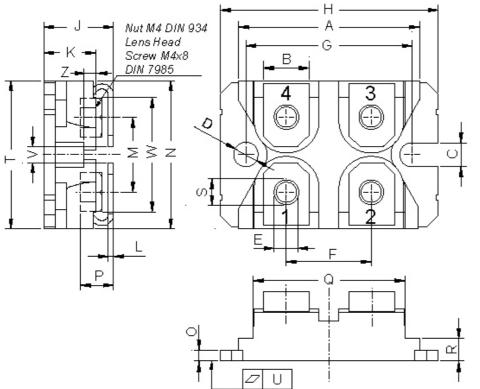

 $\ensuremath{\mathsf{IXYS}}$ reserves the right to change limits, conditions and dimensions.

LIXYS

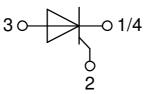
MCO50-16io1

Package	Package SOT-227B (minibloc)				Ratings			
Symbol	Definition	Conditions			min.	typ.	max.	Unit
	RMS current	per terminal 1)					150	Α
T _{vj}	virtual junction temperatur	re			-40		150	°C
T _{op}	operation temperature				-40		125	°C
T _{stg}	storage temperature				-40		150	°C
Weight						30		g
M _D	mounting torque				1,1		1,5	Nm
M _T	terminal torque				1,1		1,5	Nm
d _{Spp/App}	oroonago distanco on sur	face striking distance through air	terminal to terminal	10,5	3,2			mm
d _{Spb/Apb}	creepage distance on sun	ace Striking distance through an	terminal to backside	8,6	6,8			mm
V	isolation voltage	t = 1 second			3000			V
		t = 1 minute	50/60 Hz, RMS; liso∟ ≤ 1 mA		2500			V

 $^{1)}$ $I_{\rm MMS}$ is typically limited by the pin-to-chip resistance (1); or by the current capability of the chip (2). In case of (1) and a product with multiple pins for one chip-potential, the current capability can be increased by connecting the pins as one contact.



Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	MCO50-16io1	MCO50-16io1	Tube	10	500598


Equiv	alent Circuits for	Simulation	* on die level	T _{vJ} = 150 °C
$I \rightarrow V_0$)- <u>R</u>	Thyristor		
$V_{0 max}$	threshold voltage	0,88		V
$\mathbf{R}_{0 \text{ max}}$	slope resistance *	4,1		mΩ

Outlines SOT-227B (minibloc)

Dim.	Millimeter		Inches		
Dim.	min	max	min	max	
Α	31.50	31.88	1.240	1.255	
В	7.80	8.20	0.307	0.323	
С	4.09	4.29	0.161	0.169	
D	4.09	4.29	0.161	0.169	
Е	4.09	4.29	0.161	0.169	
F	14.91	15.11	0.587	0.595	
G	30.12	30.30	1.186	1.193	
Н	37.80	38.23	1.488	1.505	
J	11.68	12.22	0.460	0.481	
K	8.92	9.60	0.351	0.378	
L	0.74	0.84	0.029	0.033	
Μ	12.50	13.10	0.492	0.516	
Ν	25.15	25.42	0.990	1.001	
0	1.95	2.13	0.077	0.084	
Ρ	4.95	6.20	0.195	0.244	
Q	26.54	26.90	1.045	1.059	
R	3.94	4.42	0.155	0.167	
S	4.55	4.85	0.179	0.191	
Т	24.59	25.25	0.968	0.994	
U	-0.05	0.10	-0.002	0.004	
V	3.20	5.50	0.126	0.217	
W	19.81	21.08	0.780	0.830	
Ζ	2.50	2.70	0.098	0.106	

IXYS reserves the right to change limits, conditions and dimensions.

Thyristor

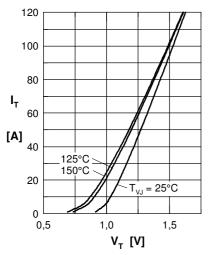
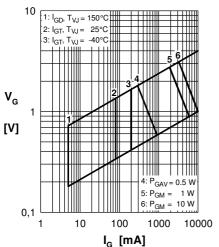
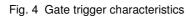




Fig. 1 Forward characteristics

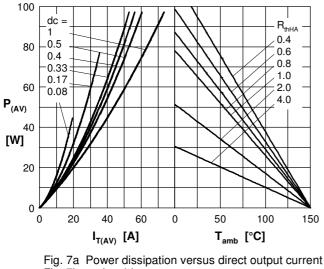
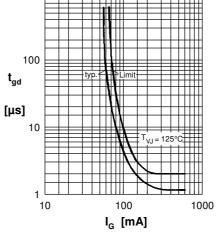
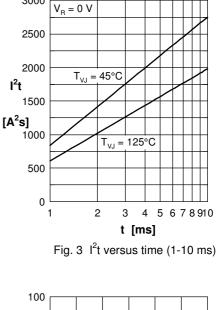




Fig. 7b and ambient temperature

3000

50 Hz, 80% V_{RR}

T_{V.1} = 45°C

600

500

400

300

1000

T_{VJ}

0,01

125°C

0,1

t [s]

Fig. 2 Surge overload current

1

I_{TSM}

[A]

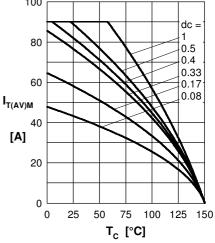
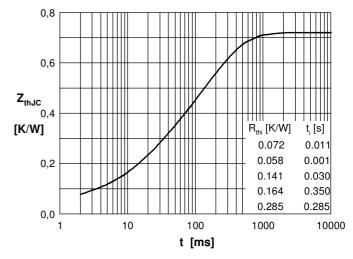



Fig. 6 Max. forward current at case temperature

