Amplifier Transistor

NPN Silicon

Features

• These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

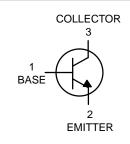
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	80	Vdc
Collector-Base Voltage	V _{CBO}	80	Vdc
Emitter-Base Voltage	V _{EBO}	6.0	Vdc
Collector Current – Continuous	Ι _C	500	mAdc

THERMAL CHARACTERISTICS

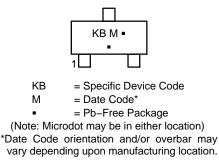
Characteristic	Symbol	Max	Unit
Total Device Dissipation FR–5 Board (Note 1) $T_A = 25^{\circ}C$ Derate above 25°C	P _D	225 1.8	mW mW/°C
Thermal Resistance, Junction-to-Ambient (Note 1)	$R_{\theta JA}$	556	°C/W
Total Device Dissipation Alumina Substrate (Note 2) T _A = 25°C Derate above 25°C	P _D	300 2.4	mW mW/°C
Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{\theta JA}$	417	°C/W
Junction and Storage Temperature Range	T _J , T _{sta}	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


1. FR-5 = 1.0 X 0.75 X 0.062 in.

2. Alumina = 0.4 X 0.3 X 0.024 in. 99.5% alumina.

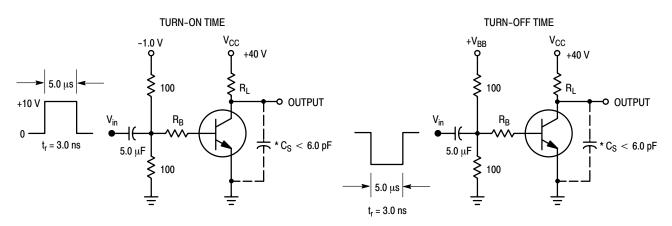
ON Semiconductor®


www.onsemi.com

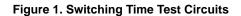
SOT-23 (TO-236) CASE 318 STYLE 6

MARKING DIAGRAM

ORDERING INFORMATION


Device	Package	Shipping †	
MMBT8099LT1G	SOT-23 (Pb-Free)	3000/Tape & Reel	

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector – Emitter Breakdown Voltage (Note 3) ($I_C = 10 \text{ mAdc}, I_B = 0$)	V _{(BR)CEO}	80	-	Vdc
Collector – Base Breakdown Voltage $(I_C = 100 \ \mu Adc, I_E = 0)$	V _{(BR)CBO}	80	-	Vdc
Emitter – Base Breakdown Voltage (I _E = 10 μ Adc, I _C = 0)	V _{(BR)EBO}	6.0	-	Vdc
Collector Cutoff Current ($V_{CE} = 60 \text{ Vdc}, I_B = 0$)	I _{CES}	_	0.1	μAdc
Collector Cutoff Current $(V_{CB} = 60 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 80 \text{ Vdc}, I_E = 0)$	I _{CBO}		0.1 -	μAdc
Emitter Cutoff Current $(V_{EB} = 6.0 \text{ Vdc}, I_C = 0)$ $(V_{EB} = 4.0 \text{ Vdc}, I_C = 0)$	I _{EBO}		0.1 -	μAdc
ON CHARACTERISTICS (Note 3)				
DC Current Gain ($I_C = 1.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}$) ($I_C = 10 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}$) ($I_C = 100 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}$)	h _{FE}	100 100 75	300 _ _	-
Collector – Emitter Saturation Voltage ($I_C = 100 \text{ mAdc}, I_B = 5.0 \text{ mAdc}$) ($I_C = 100 \text{ mAdc}, I_B = 10 \text{ mAdc}$)	V _{CE(sat)}		0.4 0.3	Vdc
Base-Emitter On Voltage ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$) ($I_C = 10 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$)	V _{BE(on)}	_ 0.6	_ 0.8	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain – Bandwidth Product (I _C = 10 mAdc, V _{CE} = 5.0 Vdc, f = 100 MHz)	f _T	150	_	MHz
Output Capacitance $(V_{CB} = 5.0 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$	C _{obo}	_	6.0	pF
Input Capacitance $(V_{EB} = 0.5 \text{ Vdc}, I_C = 0, f = 1.0 \text{ MHz})$	C _{ibo}	_	25	pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%.

*Total Shunt Capacitance of Test Jig and Connectors For PNP Test Circuits, Reverse All Voltage Polarities

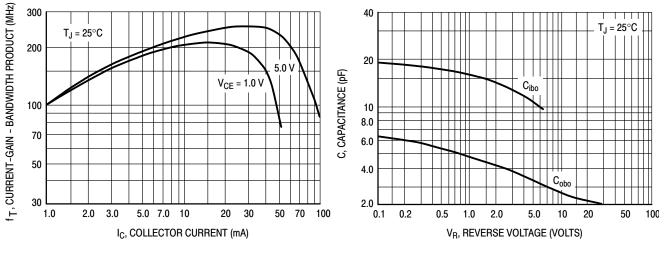
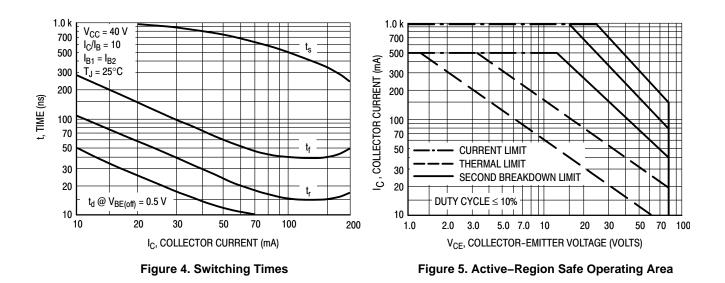



Figure 2. Current–Gain – Bandwidth Product

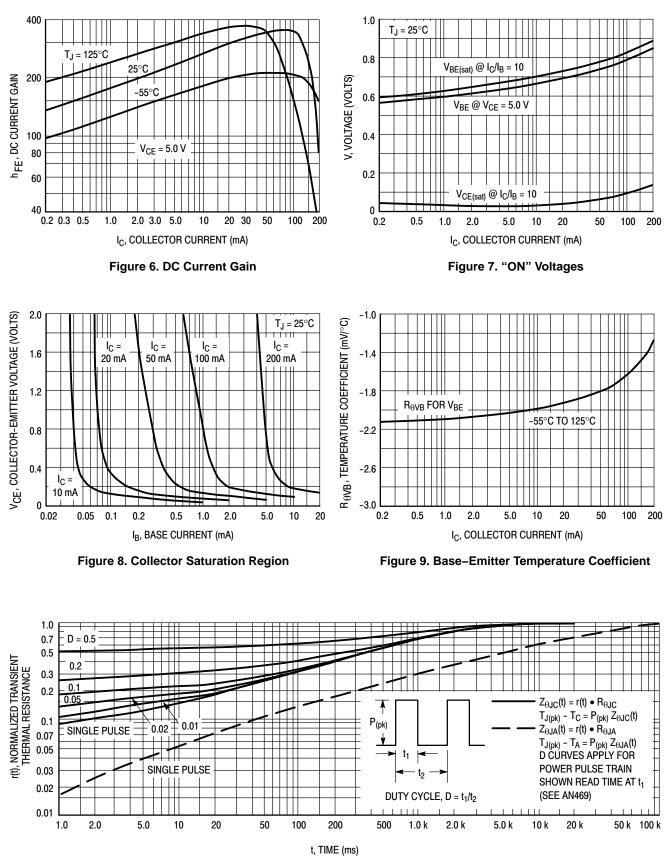
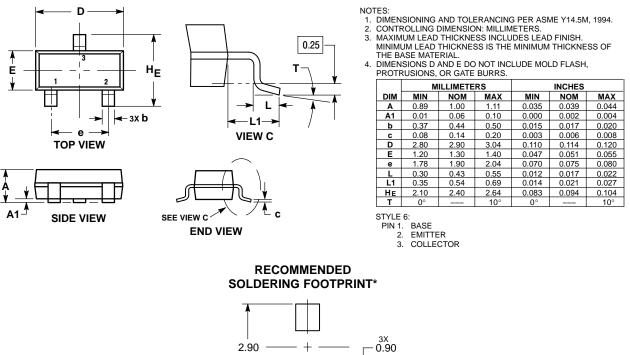



Figure 10. Thermal Response

PACKAGE DIMENSIONS

SOT-23 (TO-236) CASE 318-08 ISSUE AR

2.90 + 0.90 3x 0.80 - 0.95 PITCH DIMENSIONS: MILLIMETERS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns me rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor asy products and applications using ON Semiconductor, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor, "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor products or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON semiconductor shares against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative