NUP4301MR6, SZNUP4301MR6

Low Capacitance Diode Array for ESD Protection in Four Data Lines

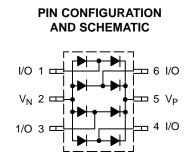
SZ/NUP4301MR6T1G is a micro–integrated device designed to provide protection for sensitive components from possible harmful electrical transients; for example, ESD (electrostatic discharge).

Features

- Low Capacitance (1.5 pf Maximum Between I/O Lines)
- Single Package Integration Design
- Provides ESD Protection for JEDEC Standards JESD22 Machine Model = Class C Human Body Model = Class 3B
- Protection for IEC61000-4-2 (Level 4) 8.0 kV (Contact) 15 kV (Air)
- Ensures Data Line Speed and Integrity
- Fewer Components and Less Board Space
- Direct the Transient to Either Positive Side or to the Ground
- SZ Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- This is a Pb–Free Device*

Applications

- USB 1.1 and 2.0 Data Line Protection
- T1/E1 Secondary IC Protection
- T3/E3 Secondary IC Protection
- HDSL, IDSL Secondary IC Protection
- Video Line Protection
- Microcontroller Input Protection
- Base Stations
- I²C Bus Protection



ON Semiconductor®

http://onsemi.com

SC-74 CASE 318F

MARKING DIAGRAM

= Pb-Free Package

(Note: Microdot may be in either location.

*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]
NUP4301MR6T1G	SC-74 (Pb-Free)	3,000 / Tape & Reel
SZNUP4301MR6T1G	SC-74 (Pb-Free)	3,000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NUP4301MR6, SZNUP4301MR6

MAXIMUM RATINGS (Each Diode) ($T_J = 25^{\circ}C$ unless otherwise noted)

Rating	Symbol	Value	Unit	
Reverse Voltage	V _R	70	Vdc	
Forward Current	١ _F	200	mAdc	
Peak Forward Surge Current	I _{FM(surge)}	500	mAdc	
Repetitive Peak Reverse Voltage	V _{RRM}	70	V	
Average Rectified Forward Current (Note 1) (averaged over any 20 ms period)	I _{F(AV)}	715	mA	
Repetitive Peak Forward Current	I _{FRM}	450	mA	
Non-Repetitive Peak Forward Current $t = 1.0 \ \mu s$ $t = 1.0 \ ms$ $t = 1.0 \ S$	I _{FSM}	2.0 1.0 0.5	A	

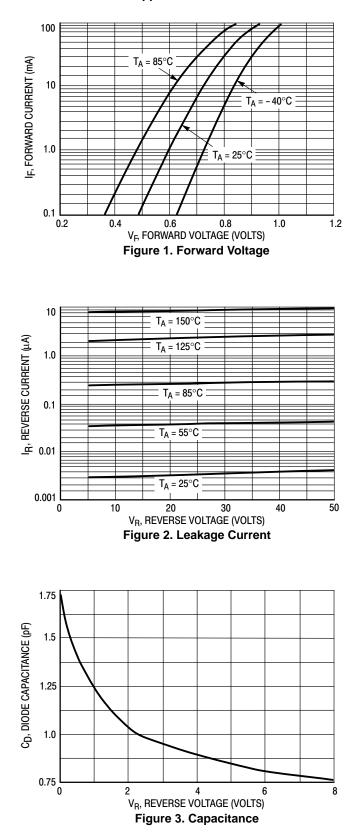
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. FR-5 = $1.0 \times 0.75 \times 0.062$ in.

THERMAL CHARACTERISTICS

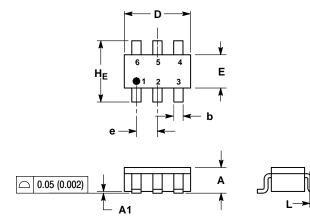
Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient	$R_{ ext{ heta}JA}$	556	°C/W
Lead Solder Temperature, Maximum 10 Seconds Duration	TL	260	°C
Junction Temperature	TJ	-40 to +150	°C
Storage Temperature	T _{stg}	–55 to +150	°C

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted) (Each Diode)


Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Reverse Breakdown Voltage (I _(BR) = 100 μA)	V _(BR)	70	-	-	Vdc
Reverse Voltage Leakage Current ($V_R = 70 \text{ Vdc}$) ($V_R = 25 \text{ Vdc}$, $T_J = 150^{\circ}\text{C}$) ($V_R = 70 \text{ Vdc}$, $T_J = 150^{\circ}\text{C}$)	I _R	- - -	- - -	2.5 30 50	μAdc
Capacitance (between I/O pins) (V _R = 0 V, f = 1.0 MHz)	CD	-	0.8	1.5	pF
Capacitance (between I/O pin and ground) $(V_R = 0 V, f = 1.0 MHz)$	CD	-	1.6	3	pF
Forward Voltage $(I_F = 1.0 \text{ mAdc})$ $(I_F = 10 \text{ mAdc})$ $(I_F = 50 \text{ mAdc})$ $(I_F = 150 \text{ mAdc})$	V _F	- - - -	- - - -	715 855 1000 1250	mV _{dc}

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 2. Alumina = $0.4 \times 0.3 \times 0.024$ in. 99.5% alumina.

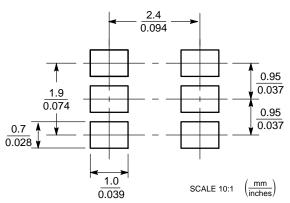
3. Include SZ-prefix devices where applicable.


NUP4301MR6, SZNUP4301MR6

Curves Applicable to Each Cathode

PACKAGE DIMENSIONS

SC-74 CASE 318F-05 ISSUE N



NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
- 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM
- THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. 4. 318F-01, -02, -03, -04 OBSOLETE. NEW STANDARD 318F-05.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.90	1.00	1.10	0.035	0.039	0.043	
A1	0.01	0.06	0.10	0.001	0.002	0.004	
b	0.25	0.37	0.50	0.010	0.015	0.020	
С	0.10	0.18	0.26	0.004	0.007	0.010	
D	2.90	3.00	3.10	0.114	0.118	0.122	
Е	1.30	1.50	1.70	0.051	0.059	0.067	
e	0.85	0.95	1.05	0.034	0.037	0.041	
Г	0.20	0.40	0.60	0.008	0.016	0.024	
ΗE	2.50	2.75	3.00	0.099	0.108	0.118	
θ	0°	-	10°	0°	-	10°	

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and IIII are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative