

Wintec Slim SATA Drive

WxESxxxG1TA-J51xx (J5) Series

INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO WINTEC INDUSTRIES PRODUCTS, AND IS SUBJECT TO CHANGE WITHOUT NOTICE.

NOTHING IN THIS DOCUMENT SHALL BE CONSTRUED AS GRANTING ANY LICENSE, EXPRESS OR IMPLIED.

ALL INFORMATION IN THIS DOCUMENT IS PROVIDED ON AN "AS-IS" BASIS WITHOUT GUARANTEE OR WARRANTY OF ANY KIND.

• Please contact your nearest Wintec representative for the latest updates or additional product information.

Revision History

Revision	Month	Year	History
0.99	September	2011	Preliminary Release
1.0	October	2011	Added 8GB and 16GB capacities
1.1	January	2012	Added 32GB SLC Configuration

Wintec Slim SATA Drive WxESxxxG1TA-J51xx (J5) Series

Table of Contents

1.0	General Product Specification	5
2.0	Electrical Specification	
3.0	Software Interface	
4.0	Physical Specifications	
5.0	Ordering Information	

Winter Slim SATA Drive

WxESxxxG1TA-J51xx Series

Features:

GENERAL

- Density up to 128GB
- JMicron 605 controller
- SATA-II interface and backwards compatible
- High-Performance SLC or MLC NAND Flash memory

PERFORMANCE

- High Performance 160MB/s Seq. Read (SATA-II)
- High Performance 100MB/s Seq. Write (SATA-II)
- Random Read: 6K IOPS at 4KB transfer (SATA-II)

RELIABILITY

- Bad Block Management & Wear Leveling
- ECC Engine: Up to 24 bits correctable per 1KB sector
- Data Integrity under power-cycling
- MTTF: 2,000,000 operating hours

COMPATIBILITY

- Serial ATA Revision 2.6 Compliant
- ATA/ATAPI-7 Compliant
- Supports TRIM and S.M.A.R.T commands
- RoHS compliant

Wintec Slim SATA Drive

NOTE:

See Section 5.0 for Configuration & Ordering Guide

Description:

The Wintec Industries WxESxxxG1TA-J51xx series of ROHS Compliant Slim SATA Drives are constructed with NAND-type flash memory devices paired to JMicron 605 SSD controller for virtual-to-physical address mapping and other sophisticated flash management functions. The Wintec Flash Solid State Disk (SSD) provides major advantages over the traditional magnetic hard disk drive (HDD). Faster access time and transfer rate, silent operation and low power consumption, better shock and vibration resistance, and lower total cost of ownership make the Wintec SSDs an attractive choice as the next generation mass storage device.

The Wintec J5 series Slim SATA provides high-speed data transfer and reliability utilizing SLC or MLC NAND-flash in storage capacities ranging from 8GB to 128GB, in JEDEC MO-297A form factor. Its robust design enables the SSD to achieve outstanding reliability and performance.

The JMF605 controller implements bad block management and dynamic/static wear-leveling techniques to ensure that the NAND flash memory is not worn out prematurely. The controller utilizes 24 bits/1K byte sector BCH ECC algorithms for error correction. The drive supports basic SMART features to monitor the drive status and TRIM command to efficiently maintain the data.

The Wintec J5 series Slim SATA drives are ideal for portable and desktop computers, point of sale (POS), handheld device, gaming machine, network equipment, notebook, thin-client and set-top boxes (STB).

1.0 General Product Specification

For all the following specifications, values are defined at ambient temperature unless otherwise stated.

Table 1: User Capacity Specifications

Model Number ¹ (typ) ^{2,3}	NAND Flash Type	Total Capacity	User Capacity	Over-provison
W7ES008G1TA-J51xx-yyy.zz	SLC	8GB	8GB	7%
W7ES016G1TA-J51xx-yyy.zz	SLC	16GB	15GB	7%
W7ES032G1TA-J51xx-yyy.zz	SLC	32GB	30GB	7%
W2ES032G1TA-J51xx-yyy.zz	MLC	32GB	30GB	7%
W2ES064G1TA-J51xx-yyy.zz	MLC	64GB	60GB	7%
W2ES128G1TA-J51xx-yyy.zz	MLC	128GB	120GB	7%

NOTE:

- 1. See Section 4.0 for Configuration & Ordering Guide
- 2.1GB = 1,000,000,000 Bytes
- 3. Capacity available to end-user is less than "Total Capacity" due to flash controller overhead, and may vary with flash configuration.

Table 2: Typical Performance Specifications

Parameter	Typical Performance ⁴
Sustained Sequential Read	up to 140MB/sec (MLC); 160MB/sec (SLC)
Sustained Sequential Write	up to 60MB/sec (MLC); 100MB/sec (SLC)
Sustained IOPS Random Read	up to 5000 IOPS (MLC); up to 6000 IOPS (SLC)

NOTE:

Table 3: Flash Endurance

Parameter	Spec	
Program/Erase Cycles	up to 100,000 cycles for SLC* up to 10,000 cycles for MLC*	
Data Retention	5 Years (Min.)	
MTTF	2,000,000 Hours	

^{*} P/E Cycles vary based on the NAND Flash Type/process.

Table 4: SSD Data Reliability

Parameter	Spec
Non-Recoverable Errors	< 1 in 10 ¹⁶ Bytes Read
Raw ECC Correctability	Up to 24 bits / 1024 Bytes data

Table 5: Environmental Specifications

	1		
Parameters		Operating	Non-Operating
Temperature	Commercial Temp.	0°C to 70°C	-55°C to 95°C
Humidity (Non-Condensing)		5% to 85%	5% to 95%
Vibration		20 G RMS	N/A
Shock (Operating)		1,500 G (Max.)	N/A
Noise		0 dB	0 dB

^{4.} Bandwidth measured on high-performance desktop system. Note that performance may also vary depending on host system, drive capacity, and drive configuration. Measured at QD=32.

1.1 Block Diagram

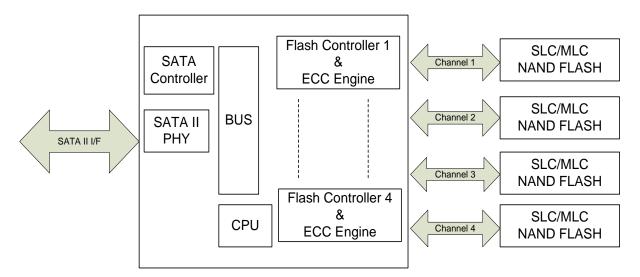


Figure 1. Block Diagram

1.2 Architecture

The Wintec J5 series SSD utilizes a single flash controller chip with 4 parallel channels of flash memory interface. The flash controller also simultaneously manages the file read and write interface with the host system via a single SATA-II interface. By utilizing 4 parallel channels of SLC or MLC flash memory, Slim SATA SSD can provide both high performance and reliability, while maintaining a minimal unit cost.

2.0 Electrical Specification

2.1 General

Table 6: Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Units
V_{CC}	V _{CC} With Respect to GND	-0.5	6.0	V

Table 7: Typical Operating Conditions (V_{CC} =5V ± 10%)

Parameter	Min	Max	Units
V _{CC} With Respect to GND	4.5	5.5	V
Operating Temperature (Commercial Temp)	0	70	°C
Humidity	5	85	%
	V _{CC} With Respect to GND Operating Temperature (Commercial Temp)		

Table 8: Power consumption

Symbol	Parameter	Value	Units
Pi	Idle Power consumption	0.35	Watts
$\mathbf{P}_{\mathbf{T}}$	Typical operating power consumption	0.7	Watts
P _{max}	Maximum operating power consumption	1.25	Watts

2.2 SATA Pin Assignment and Description

The SATA connectors are compliant with standard SATA power specifications. As is standard, power may be supplied to all of the power pins. However, only the 5V power pins are utilized to provide power to the SSD. Therefore, where non-standard power supplies and connections are utilized, the power supply does not need to supply the SSD with power to the 3.3V or 12V power pins.

Table 9: SATA connector specification compliant

	No.	Plug Connector pin definition		
	S1	GND	Ground	
	S2	A+	Differential district A	
	S3	A-	Differential signal A	
Signal	S4	GND	Ground	
	S5	В-	Differential discust D	
	S6	B+	Differential signal B	
	S7	GND	Ground	
	Key and	l spacing separ	ate signal and power segments	
	P1	V33	3.3V power (Not Used)	
D	P2	V33	3.3V power (Not Used)	
Power	Р3	V33	3.3V power, pre-charge (Not Used)	
	P4	GND	Ground	

P5	GND	Ground
P6	GND	Ground
P7	V5	5V power, pre-charge
P8	V5	5V power
P9	V5	5V power
P10	GND	Ground
P11	DAS/DSS	Device Activity Signal
P12	GND	Ground
P13	V12	12V power, pre-charge (Not Used)
P14 V12 12V power (Not Used)		12V power (Not Used)
P15	V12	12V power (Not Used)

3.0 Software Interface

3.1 ATA Command Set

All mandatory, and many optional commands and features are supported. The following tables summarize the ATA feature set and commands.

Table 11: ATA Command

Command Nama	Code	Parameters Used					
Command Name		SC	SN	CY	DR	HD	FT
CHECK POWER MODE	E5h	О	X	X	О	X	X
DEVICE CONFIGURATION OVERLAY	B1h	X	X	X	О	X	О
EXECUTE DIAGNOSTICS	90h	X	X	X	О	X	X
FLUSH CACHE	E7h	X	X	X	О	X	X
FLUSH CACHE EXT	EAh	X	X	X	О	X	X
IDENTIFY DEVICE	ECh	X	X	X	O	X	X
IDLE	E3h	О	X	X	О	X	X
IDLE IMMEDIATE	E1h	X	X	X	О	X	X
NOP	00h	F	F	F	O	X	O
INITIALIZE DEVICE PARAMETERS	91h	O	X	X	О	O	X
READ BUFFER	E4h	X	X	X	O	X	X
READ DMA	C8h or C9h	O	O	O	O	O	X
READ DMA EXT	25h	O	O	O	O	O	X
READ FPDMA QUEUED	60h	О	О	О	О	О	О
READ LOG EXT	2Fh	O	О	O	О	O	О
READ MULTIPLE	C4h	О	О	О	О	О	X
READ MULTIPLE EXT	29h	O	О	O	О	О	X
READ NATIVE MAX ADDRESS	F8h	X	X	X	O	X	X
READ NATIVE MAX ADDRESS EXT	27h	X	X	X	О	X	X
READ SECTOR(S)	20h or 21h	О	О	О	О	О	X
READ SECTOR(S) EXT	24h	0	O	O	O	O	X

	1	_	_	_	_	_	
READ VERIFY SECTOR(S)	40h or 41h	О	О	O	О	O	X
READ VERIFY SECTOR(S) EXT	42h	О	О	О	О	О	X
RECALIBRATE	10h	X	X	X	О	X	X
SECURITY DISABLE PASSWORD	F6h	X	X	X	О	X	X
SECURITY ERASE PREPARE	F3h	X	X	X	О	X	X
SECURITY ERASE UNIT	F4h	X	X	X	О	X	X
SECURITY FREEZE LOCK	F5h	X	X	X	О	X	X
SECURITY SET PASSWORD	F1h	X	X	X	О	X	X
SECURITY UNLOCK	F2h	X	X	X	О	X	X
SEEK	7xh	X	X	О	О	О	X
SET FEATURES	EFh	О	X	X	О	X	О
SET MAX	F9h	О	О	O	О	О	О
SET MAX ADDRESS EXT	37h	О	О	О	О	О	X
SET MULTIPLE MODE	C6h	О	X	X	О	X	X
SLEEP	E6h	X	X	X	О	X	X
SMART	B0h	X	X	О	О	X	О
STANDBY	E2h	X	X	X	О	X	X
STANDBY IMMEDIATE	E0h	X	X	X	О	X	X
WRITE BUFFER	E8h	X	X	X	О	X	X
WRITE DMA	CAh or CBh	О	О	О	О	О	X
WRITE DMA EXT	35h	О	О	О	О	О	X
WRITE DMA FUA EXT	3Dh	О	О	О	О	О	X
WRITE FPDMA QUEUED	61h	О	О	О	О	О	О
WRITE LOG EXT	3Fh	О	О	О	О	О	X
WRITE MULTIPLE	C5h	О	О	O	О	О	X
WRITE MULTIPLE EXT	39h	О	О	О	О	О	X
WRITE MULTIPLE FUA EXT	CEh	О	О	O	О	О	X
WRITE SECTOR(S)	30h or 31h	О	О	O	О	О	X
WRITE SECTOR(S) EXT	34h	О	О	О	О	О	X
WRITE VERIFY	3Ch	О	О	O	О	О	О

Note:

O = Valid, X = Don't care

SC = Sector Count Register

SN = Sector Number Register

CY = Cylinder Low/High Register

DR = Device Select Bit (Device/Head Register Bit 4)

HD = Head Select bit (Device/Head Register Bit 3-0)

FT = Features Register

3.2 SMART Command Support

The J5 series SSD drive supports basic SMART command Set used to define some vendor-specific data to report spare/bad block numbers in each memory management unit.

Table 12: SMART Command Set

Value	Command	Value	Command
D0h	Read Data attributes	D1h	Read attribute Threshold
D2h	Enable/Disable attribute autosave	D3h	Save attribute Values
D8h	Enable SMART operation	D9h	Disable SMART operation
DAh	Smart Return Status		

3.2.1 SMART Attribute Sector

The following 512 bytes defines the SMART format. Users can obtain the data using the "Read Data" command.

Table 13: SMART Attribute Data Structure

Byte	Description	
0-1	Data Structure revision number	
2-13	1st attribute data	
14-361	2 nd -30 th Individual attribute data	
362	Off-line data collection status	
363	Self-test execution status	
364-365	Total time in seconds to complete off-line data collection	
366	Reserved	
367	Off-line data collection capability	
368-369	SMART capability	
370	Error logging capability	
371	Self-test failure checkpoint	
372	Short self-test routine recommended polling time (in minutes)	
373	Extended self-test routine recommended polling time (in minutes)	
374-510	Reserved	
511	Data structure checksum	

3.2.2 Supported SMART Attributes

The following table summarizes the SMART attribute Menu.

Table 14: SMART Attribute Menu Summary

ID	Hex	Attribute Name
1	01h	Read Error Rate
2	02h	Throughput Performance
3	03h	Spin up time
5	05h	Reallocated Sector Count
7	07h	Seek Error Rate
8	08h	Seek Time Performance
9	09h	Power-On hours Count
10	0Ah	Spin Retry Count

12	0Ch	Device Power Cycle Count
168	A8h	SATA PHY Error Count
170	AAh	Bad Block Count
173	ADh	Erase Count
175	AFh	Bad Cluster Table Count
192	C0h	Unexpected power Loss Count
194	C2h	Temperature
197	C5h	Current Pending Sector Count
240	F0h	Write Head

4.0 Physical Specifications

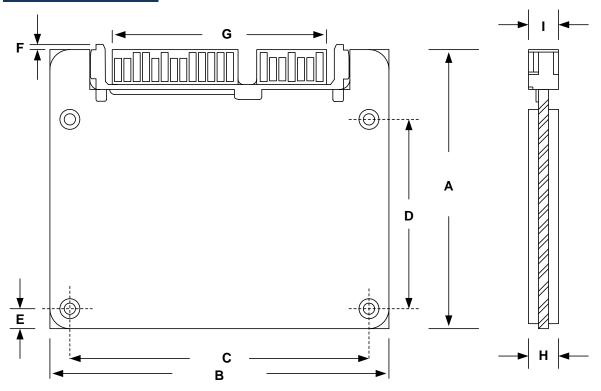


Figure 2: Physical Dimensions

Table 15: Physical Specifications

	Common Dimensions (mm)			
Symbol	Min	Nom	Max	
A	-	39.00	-	
В	53.85	54.00	54.15	
С	-	49.40	-	
D	-	25.00	-	
E	2.15	2.30	2.45	
F	-	0.80	-	
G	-	33.39	-	
Н	-	-	4.00	
I	3.85	4.00	4.15	

5.0 Ordering Information

Table 16: Product Availability List & Naming

Model Number	NAND Flash Type	User Capacity
WxES008G1TA-J51yyy-zzz.aa	SLC/MLC	7.5GB
WxES016G1TA-J51yyy-zzz.aa	SLC/MLC	15GB
WxES032G1TA-J51yyy-zzz.aa	SLC/MLC	30 GB
WxES064G1TA- J51yyy-zzz.aa	SLC/MLC	60 GB
WxES128G1TA- J51yyy-zzz.aa	SLC/MLC	120 GB

(x) Flash Type

7: SLC Flash 2: MLC Flash

P: Samsung

(yyy) Flash IC Manufacturer, Die Revision, Process

M: M-die

3:3x nm

2:2x nm

I: Intel A: A-die M: Micron B: B-die T: Toshiba C: C-die

(zzz) Component Flash Configuration

002: 2-Nand, Single Die Package, 1-CE 02D: 2-Nand, Dual Die Package, 1-CE 2D2: 2-Nand, Dual Die Package, 2-CE 2Q2: 2-Nand, Quad Die Package, 2-CE 004: 4-Nand, Single Die Package, 1-CE 4D2: 2-Nand, Dual Die Package, 2-CE 4O2: 4-Nand, Ouad Die Package, 2-CE

(aa) Firmware Revision/Options

Please contact the factory for the latest firmware revisions and/or custom labeling and programming identification.

Contact Us (US & Int'l):

Wintec Industries OEM Sales 675 Sycamore Drive Milpitas, CA 95035 Ph: 408-856-0500

Fax: 408-856-0501 oemsales@wintecind.com http://www.wintecind.com/oem

About Wintec Industries, Inc.:

Wintec Industries, founded in 1988, is headquartered in Milpitas, California. Wintec, an ODM/OEM solution provider, specializes in product designs and manufacturing, including Flash modules (CF, SD, USB, embedded Flash, SSD, etc), DRAM modules (RDIMM, SODIMM, UDIMM), wireless products, modem products (embedded and USB), Advanced Digital Display products (ADD2 DVI, HDMI, digital signage), and so on. With experienced engineering team in Silicon Valley, Wintec provides a wide range of services and solutions for customers. Wintec is ISO9001-2000 certified.

Important Notice:

Wintec Industries makes no representations or warranties with respect to the contents of this datasheet and specifically disclaims any implied warranties of any product design for any particular purpose. Wintec Industries reserves the rights to revise this publication and to make changes from time to time in the content hereof without obligation of Wintec Industries to notify any person or organization of such revisions or changes.